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“The Unreasonable Effectiveness of Mathematics
in the Natural Sciences” [Eugene Wigner, 1960]

“It is difficult to avoid the impression that a miracle confronts us

here, quite comparable in its striking nature to the miracle that the

human mind can string a thousand arguments together without

getting itself into contradictions, or to the two miracles of laws of

nature and of the human mind’s capacity to divine them.”
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Beauty in mathematics

What is the nature of beauty in maths?

e iπ = −1?

If that is beautiful, what is ugly?

π−
1
2
sΓ(12 s)ζ(s) = π−

1
2
(1−s)Γ(12 (1− s))ζ(1− s)?

Γ(u) =

∫

∞

0
xu−1e−x dx , ζ(s) =

∑

n

1

ns
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Beauty in the action [not the typesetting]

x2 = 1 has two roots x = ±1,
x2 = −1 has none!

So let’s imagine one!

Definition: i =
√
−1

The reals R containing all ‘real’ numbers x

The complex number C: all numbers of the form x + iy
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beauty and truth
in mathematics

“For those who have learned something of higher mathematics,

nothing could be more natural than to use the word “beautiful” in

connection with it.

Mathematical beauty . . . arises from a combination of strangeness

and inevitability. Simply defined abstractions disclose hidden quirks

and complexities. Seemingly unrelated structures turn out to have

mysterious correspondences. Uncanny patterns emerge, and they

remain uncanny even after being underwritten by the rigor of

logic.” [Jim Holt]

agreed sense of right and wrong!
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Complex analysis

An “imaginary” area of maths that solves problems in

• integration

• differential equations

• number theory

• applied maths

• physics

• engineering, etc

How can this be?
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Solution of the quadratic/cubic equation

Quadratic: ax2 + bx + c = 0,

Solution: x =
−b ±

√
b2 − 4ac

2a

Cubic: ax3 + bx2 + cx + d = 0,

Solution: ??

Conundrum: Can have three real roots given by square roots of
negative numbers (without using sine, cosine etc)
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Gerolamo Cardano (1501–1576)

+ Tartaglia
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The complex plane (“Argand diagram”)

x

y

x+ iy

1 2

i

−i

−1

1 + i

−2 +
1

2
i

|z| = 1

analysis ←→ geometry
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Differentiation in reals (Newton, Leibniz)

y = f(x)

(x, f(x))

δy

δx

gradient/steepness: f ′(x) =
δy

δx

f (x + δx) ≈ f (x) + δx f ′(x)
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Complex differentiation

z

z + δz

there exists a complex number γ = γ(z) such that:

f (z + δz) ≈ f (z) + γ δz

Definition: γ is called the complex derivative of f , written f ′(z)
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Smoothness

The property “being differentiable” or “having a derivative” is a
smoothness property

Complex differentiability is a much more severe restriction than
real differentiability

Therefore, “fewer” complex functions are differentiable

Therefore, they have more properties

They are called analytic or holomorphic
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Conformality

Mercator projection is conformal

It maps the sphere to the cylinder and preserves angles

“Theorem” analytic = conformal
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Conformal functions

Φ : R2 → R
2 is conformal on the domain D if it preserves angles

Φ

D

Φ(x)
x

α

α

1. Conformal maps are locally a dilation + rotation

2. Conformal = analytic on D ⊆ C with non-zero derivative
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Universality

Physical observable ice melts

Model of statistical physics lattice model

Parameter temperature

Phase transition melting

What sort of singularity is it? universality
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Recent progress with universality

Physics says: universality is connected to renormalization
Looking on bigger and bigger scales

Progress depends heavily on the number of dimensions

Exceptional case of two dimensions

universality ↔ invariance under local rotations/dilations

↔ conformal invariance

↔ complex analysis

↔ conformal field theory
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Ising model for ferromagnet

Hamiltonian: configuration σ has (large) energy

H(σ) = total length of interfaces

probability of configuration Ce−H(σ)/T
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Phase transition in infinite volume

finite Λ ⊆ Z
2

+ + +

+

+

+ 0

Λ

‘order parameter’: MΛ(β) = P+
β (σ0 = +1)

‘thermodynamic limit’: MΛ(β) ↓ M(β) as Λ ↑ Z2

Theorem: M(β)

{

= 0 if β < βc,

> 0 if β > βc,

where 2βc = log(1 +
√
2).

Lenz/Ising, Onsager, . . . , Chelkak/Smirnov

critical exponents
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Universality?

Question: is the ‘type of singularity’ the same for all
two-dimensional systems?

Answer (Chelkak–Smirnov): Yes, for very large class of systems.

19/28



Universality?

Question: is the ‘type of singularity’ the same for all
two-dimensional systems?

Answer (Chelkak–Smirnov): Yes, for very large class of systems.

19/28



Rhombic tiling

Penrose, de Bruijn
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Rhombic tiling + isoradial graph

Duffin +
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An isoradial graph
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An isoradial graph
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Penrose percolation
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Penrose: isoradial graph and track-system
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What’s going on?

1. isoradial graphs are exactly those for which one can construct
a discrete complex analysis [Duffin 1968].

2. discrete → continuum

3. limit object is invariant under conformal maps.

Hero of the piece: i =
√
−1
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What’s next?
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