The Unreasonable Effectiveness of $\sqrt{-1}$

Geoffrey Grimmett
Cambridge University

18 March 2014
"The Unreasonable Effectiveness of Mathematics in the Natural Sciences" [Eugene Wigner, 1960]

"It is difficult to avoid the impression that a miracle confronts us here, quite comparable in its striking nature to the miracle that the human mind can string a thousand arguments together without getting itself into contradictions, or to the two miracles of laws of nature and of the human mind's capacity to divine them."

Beauty in mathematics

What is the nature of beauty in maths?

$$
e^{i \pi}=-1 ?
$$

Beauty in mathematics

What is the nature of beauty in maths?

$$
e^{i \pi}=-1 ?
$$

If that is beautiful, what is ugly?

$$
\pi^{-\frac{1}{2} s} \Gamma\left(\frac{1}{2} s\right) \zeta(s)=\pi^{-\frac{1}{2}(1-s)} \Gamma\left(\frac{1}{2}(1-s)\right) \zeta(1-s) ?
$$

$$
\Gamma(u)=\int_{0}^{\infty} x^{u-1} e^{-x} d x, \quad \zeta(s)=\sum_{n} \frac{1}{n^{s}}
$$

Beauty in the action [not the typesetting]

$$
\begin{aligned}
& x^{2}=1 \text { has two roots } x= \pm 1 \\
& x^{2}=-1 \text { has none! }
\end{aligned}
$$

Beauty in the action [not the typesetting]

$$
\begin{aligned}
& x^{2}=1 \text { has two roots } x= \pm 1, \\
& x^{2}=-1 \text { has none! }
\end{aligned}
$$

So let's imagine one!

$$
\text { Definition: } i=\sqrt{-1}
$$

The reals \mathbb{R} containing all 'real' numbers x The complex number \mathbb{C} : all numbers of the form $x+i y$

beauty and truth in mathematics

beauty and truth in mathematics

"For those who have learned something of higher mathematics, nothing could be more natural than to use the word "beautiful" in connection with it.

Mathematical beauty ... arises from a combination of strangeness and inevitability. Simply defined abstractions disclose hidden quirks and complexities. Seemingly unrelated structures turn out to have mysterious correspondences. Uncanny patterns emerge, and they remain uncanny even after being underwritten by the rigor of logic." [Jim Holt]

Complex analysis

An "imaginary" area of maths that solves problems in

- integration
- differential equations
- number theory
- applied maths
- physics
- engineering, etc

How can this be?

Solution of the quadratic/cubic equation

Quadratic: $a x^{2}+b x+c=0$,
Solution: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Solution of the quadratic/cubic equation

Quadratic: $a x^{2}+b x+c=0$,
Solution: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Cubic: $a x^{3}+b x^{2}+c x+d=0$,
Solution: ??

Conundrum: Can have three real roots given by square roots of negative numbers (without using sine, cosine etc)

Gerolamo Cardano (1501-1576)

+ Tartaglia

The complex plane ("Argand diagram")

The complex plane ("Argand diagram")

analysis \longleftrightarrow geometry

Differentiation in reals (Newton, Leibniz)

gradient/steepness: $f^{\prime}(x)=\frac{\delta y}{\delta x}$

$$
f(x+\delta x) \approx f(x)+\delta x f^{\prime}(x)
$$

Complex differentiation

there exists a complex number $\gamma=\gamma(z)$ such that:

$$
f(z+\delta z) \approx f(z)+\gamma \delta z
$$

Definition: γ is called the complex derivative of f, written $f^{\prime}(z)$

Smoothness

The property "being differentiable" or "having a derivative" is a smoothness property

Smoothness

The property "being differentiable" or "having a derivative" is a smoothness property

Complex differentiability is a much more severe restriction than real differentiability

Therefore, "fewer" complex functions are differentiable Therefore, they have more properties

Smoothness

The property "being differentiable" or "having a derivative" is a smoothness property

Complex differentiability is a much more severe restriction than real differentiability

Therefore, "fewer" complex functions are differentiable Therefore, they have more properties

They are called analytic or holomorphic

Conformality

Mercator projection is conformal
It maps the sphere to the cylinder and preserves angles
"Theorem" analytic = conformal

Conformal functions

$\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is conformal on the domain D if it preserves angles

Conformal functions

$\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is conformal on the domain D if it preserves angles

1. Conformal maps are locally a dilation + rotation
2. Conformal $=$ analytic on $D \subseteq \mathbb{C}$ with non-zero derivative

Universality

Physical observable
Model of statistical physics
Parameter
Phase transition
What sort of singularity is it?
ice melts
lattice model temperature melting
universality

Recent progress with universality

Physics says: universality is connected to renormalization Looking on bigger and bigger scales

Progress depends heavily on the number of dimensions

Recent progress with universality

Physics says: universality is connected to renormalization Looking on bigger and bigger scales

Progress depends heavily on the number of dimensions
Exceptional case of two dimensions

$$
\begin{aligned}
\text { universality } & \leftrightarrow \text { invariance under local rotations/dilations } \\
& \leftrightarrow \text { conformal invariance } \\
& \leftrightarrow \text { complex analysis } \\
& \leftrightarrow \text { conformal field theory }
\end{aligned}
$$

Ising model for ferromagnet

Ising model for ferromagnet

Hamiltonian: configuration σ has (large) energy

$$
H(\sigma)=\text { total length of interfaces }
$$

Ising model for ferromagnet

Hamiltonian: configuration σ has (large) energy

$$
H(\sigma)=\text { total length of interfaces }
$$

probability of configuration $\mathrm{Ce}^{-H(\sigma) / T}$

Phase transition in infinite volume

 finite $\Lambda \subseteq \mathbb{Z}^{2}$
'order parameter': $M_{\Lambda}(\beta)=P_{\beta}^{+}\left(\sigma_{0}=+1\right)$

Phase transition in infinite volume

 finite $\Lambda \subseteq \mathbb{Z}^{2}$
'order parameter': $M_{\Lambda}(\beta)=P_{\beta}^{+}\left(\sigma_{0}=+1\right)$
'thermodynamic limit': $M_{\Lambda}(\beta) \downarrow M(\beta)$ as $\Lambda \uparrow \mathbb{Z}^{2}$

Phase transition in infinite volume

'order parameter': $M_{\Lambda}(\beta)=P_{\beta}^{+}\left(\sigma_{0}=+1\right)$
'thermodynamic limit': $M_{\Lambda}(\beta) \downarrow M(\beta)$ as $\Lambda \uparrow \mathbb{Z}^{2}$
Theorem: $M(\beta) \begin{cases}=0 & \text { if } \beta<\beta_{\mathrm{c}}, \\ >0 & \text { if } \beta>\beta_{\mathrm{c}},\end{cases}$
where $2 \beta_{\mathrm{c}}=\log (1+\sqrt{2})$.
Lenz/Ising, Onsager, ... Chelkak/Smirnov critical exponents

Universality?

Question: is the 'type of singularity' the same for all two-dimensional systems?

Universality?

Question: is the 'type of singularity' the same for all two-dimensional systems?

Answer (Chelkak-Smirnov): Yes, for very large class of systems.

Rhombic tiling

Penrose, de Bruijn

Rhombic tiling + isoradial graph

Duffin +

An isoradial graph

An isoradial graph

Penrose percolation

Penrose: isoradial graph and track-system

What's going on?

1. isoradial graphs are exactly those for which one can construct a discrete complex analysis [Duffin 1968].
2. discrete \rightarrow continuum
3. limit object is invariant under conformal maps.

What's going on?

1. isoradial graphs are exactly those for which one can construct a discrete complex analysis [Duffin 1968].
2. discrete \rightarrow continuum
3. limit object is invariant under conformal maps.

Hero of the piece: $i=\sqrt{-1}$

What's next?

